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Summary
This paper gives an expectation maximization (EM) algo-
rithm to obtain allele frequencies, haplotype frequencies,
and gametic disequilibrium coefficients for multiple-locus
systems. It permits high polymorphism and null alleles at
all loci. This approach effectively deals with the primary
estimation problems associated with such systems; that is,
there is not a one-to-one correspondence between pheno-
typic and genotypic categories, and sample sizes tend to
be much smaller than the number of phenotypic categories.
The EM method provides maximum-likelihood estimates
and therefore allows hypothesis tests using likelihood ratio
statistics that have x2 distributions with large sample sizes.
We also suggest a data resampling approach to estimate
test statistic sampling distributions. The resampling ap-
proach is more computer intensive, but it is applicable to
all sample sizes. A strategy to test hypotheses about aggre-
gate groups of gametic disequilibrium coefficients is recom-
mended. This strategy minimizes the number of necessary
hypothesis tests while at the same time describing the struc-
ture of disequilibrium. These methods are applied to three
unlinked dinucleotide repeat loci in Navajo Indians and
to three linked HLA loci in Gila River (Pima) Indians. The
likelihood functions of both data sets are shown to be
maximized by the EM estimates, and the testing strategy
provides a useful description of the structure of gametic
disequilibrium. Following these applications, a number of
simulation experiments are performed to test how well the
likelihood-ratio statistic distributions are approximated by
X2 distributions. In most circumstances the x2 grossly un-
derestimated the probability of type I errors. However, at
times they also overestimated the type 1 error probability.
Accordingly, we recommend hypothesis tests that use the
resampling method.

Introduction
Many highly polymorphic loci are now available for link-
age analyses, forensics, and other population-genetic appli-
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cations (Weber and May 1989; Weissenbach et al. 1992;
Gyapay et al. 1994). This wealth of information has created
a need for efficient statistical methods and computer algo-
rithms to estimate such basic quantities as allele and haplo-
type frequencies. While counting alleles directly provides
maximum-likelihood (ML) allele-frequency estimates for a
locus with all codominant alleles (Gart and Nam 1984),
the method requires a one-to-one correspondence between
genotypes and phenotypes. Consequently, direct haplotype
counting is impossible for multiple loci because multiple-
locus heterozygosity masks genotypic categories (Hill
1974). The correspondence between genotypic and pheno-
typic categories is further obscured by recessive alleles. This
is important because many highly polymorphic genetic sys-
tems possess a battery of mutually codominant alleles and
one recessive allele; these systems are commonly referred
to as "generalized ABO-like" (Yasuda and Kimura 1968).
Genetic estimation is also challenged by the fact that with
high polymorphism sample sizes tend to be smaller than
the number of genotypic categories, so that any particular
genotype is likely to be unique or absent in a sample (Guo
and Thompson 1992; Weir 1992). To illustrate these com-
plexities, consider a typical HLA analysis; there might be
15 HLA-A alleles, 25 HLA-B alleles, and 7 HLA-C alleles
occurring in a single sample. This allows the possibility of
2,625 three-locus haplotypes, 3,446,625 genotypes, and
701,932 phenotypes (assuming one recessive allele at each
locus). Not all of these will be realized in large populations,
let alone in samples drawn from them.
The likelihood functions for single- and multiple-locus

genetic models are easily written, even with recessive alleles,
but there are a number of analytical problems. For exam-
ple, the multiple-locus likelihood function can have hun-
dreds or thousands of parameters, and numerical methods
must be used to solve for a maximum. Many numerical
methods are sensitive to rounding errors, and it usually
cannot be proved that a particular solution is the global
maximum. Moreover, a very large number of hypotheses
can be formulated with so many parameters, and the sig-
nificance level for a set of hypotheses must be adjusted to
account for the number of tests performed (Sokal and Rohlf
1981; Weir 1990).
The purposes of this paper are fourfold. First, an expec-

tation maximization (EM) algorithm (Cepellini et al. 1955;
Smith 1957; Dempster et al. 1977; Ott 1977) is described
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for ML estimation of multiple-locus haplotype frequencies.
Second, a likelihood ratio strategy is given for testing
hypotheses about gametic disequilibrium. Third, data re-
sampling techniques are used to evaluate the sampling dis-
tributions of the likelihood-ratio statistics. Fourth, two data
sets are analyzed in order to illustrate the proposed meth-
ods. An EM algorithm similar to the one presented here
was used by Baur and Danilovs (1980) to estimate three-
locus HLA haplotype frequencies, and they were able show
its superiority over a competing method (Piazza 1975).
Unfortunately, these authors did not explain the algorithm
in detail, nor did they connect it to ML theory. Conse-
quently, its application was not wide in subsequent years.
The ML connection is crucial because it shows the statisti-
cal soundness of the technique and it enables formal hy-
pothesis testing.

Genetic and Statistical Background

We will describe the algorithm for a genetic model with
three loci, with each locus possessing a battery of mutually
codominant alleles and one allele that is recessive to all
others (i.e., generalized ABO-like systems). This genetic
model serves to illustrate most problems encountered in
the estimation and testing process, but the algorithm's basic
features are readily applied to both more and less compli-
cated situations.

Consider three polymorphic loci designated A, B, and
C, with nA, nB, and nc alleles, respectively. The first allele
in each series is recessive to all of the other alleles that are
both detectable and mutually codominant. Recessive alleles
are due to limitations of the laboratory method (e.g., serol-
ogy) or to the absence of a gene (e.g., Rh-D negative), but
they are not due to typing errors or data missing due to
sample degradation, etc. Let Pa denote the frequency of the
ath allele at the first locus (a = AO, Al, . . ., A"A), qb denote
the frequency of the bth allele at the second locus (b = B0,
B1, ... , Bn,), and r, denote the frequency of the cth allele
at the third locus (c = C0, C1, . ..., Cnc). Habc denotes the
haplotype carrying the ath, bth, and cth nonallelic genes,
and its frequency is fabc. Bennett (1954) showed that this
frequency can be decomposed into the product of the sin-
gle-locus gene frequencies and appropriately weighted sec-
ond- and third-order disequilibrium coefficients:

fabc = Paqbrc + PaD(BC)bc + qbD(AC)ac (1)

+ rcD(AB)ab + D(ABC)abc.

This construction is useful because it removes lower-order
disequilibrium effects from higher-order disequilibrium
components (Weir 1990). Allele frequencies at the individ-
ual loci and haplotype frequencies at pairs of loci are ob-
tained by summing over the appropriate three-locus haplo-
type frequencies. The disequilibrium coefficients are ob-

tained by simple algebra (see table 1). The second- and
third-order disequilibrium coefficients can be considered
measures of linkage disequilibrium, but gametic disequilib-
rium is a more appropriate term because nonallelic genes
can be associated on gametes for reasons other than linkage
(such as population structure). Moreover, application of
basic principles shows that only very tight linkage results
in disequilibrium (Hartl and Clark 1989).
ML estimates of allele frequencies and disequilibria are

provided by applying the same algebra to ML estimates of
haplotype frequencies as would be applied to the popula-
tion parameters. Thus, an ML set of haplotype frequency
estimates is sufficient to describe the entire system. As usual,
it is necessary to estimate one parameter fewer than the
number of haplotypes, because the haplotype frequencies
sum to 1.0. For our purposes, statistics will be distinguished
from their corresponding parameters by using primes (e.g.,
fabc estimates fabc)

Methods

Estimation
Consider a random sample of N individuals taken with
replacement from a large and random-mating diploid pop-
ulation. The logarithmic likelihood function of the haplo-
type model is

N

In L = A In Pr(Pi),
i=1

(2)

where InPr(Pi) is the logarithm of the probability of the ith
person's phenotype. Pr(P,) is calculated by sunning the
probabilities of all constituent genotypes (i.e., all the geno-
types that can express the phenotype), and the genotype
frequencies are given by Hardy-Weinberg expansion of
haplotype frequencies. While log-likelihood functions are
usually written as a summation over all possible pheno-
types, it is more efficient with highly polymorphic systems
to sum over individuals because there are fewer individuals
sampled than there are potential phenotypes. In accordance
with this version of the likelihood function, the EM algo-
rithm described below processes the data by person at each
iteration, rather than by phenotype. The expectation step of
the algorithm is concerned with the quantities E[NabcIP1
which are the expected numbers of haplotypes, given a
phenotype, while the maximization step involves counting
these expected numbers over all individuals.
The following data structure is useful for implementing

the algorithm. A record consisting of six fields (a pair for
each locus) is constructed for each phenotype. For each
locus the two fields are scored as follows: If no alleles are
detected, zeros are placed in both fields. If one allele is
detected, its specificity is recorded in the first field and the
second field is assigned a zero. If two alleles are detected,
then each field records one of the specificities. A person is
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Table I

Summary Statistics from Haplotype Frequencies

Component

Allele frequencies ....................

Two-locus haplotype
frequencies ..........................

Pairwise disequilibria ..............

Three-way disequilibria ...........

heterozygous for detectable alleles at a locus if both fields
are assigned nonzero values; a nonzero value followed by
a zero indicates that the person is either homozygous for
the detectable allele or heterozygous for the detectable allele
and the recessive; zeros in both fields indicate that the per-
son is homozygous for the recessive allele.
The specific steps of our E-M algorithm are as follows:

(a) The alleles at each locus are numbered with consecutive
integers, beginning with zero, which is reserved for the
blank allele. (b) A set of trial haplotype frequencies is cho-
sen. (c) A variable Tabc is created for each Habc to keep a
running total of its expected numbers. (d) For each pheno-
type in the sample, (i) the constituent genotypes are identi-
fied by placing the person's phenotype into 1 of the 27
categories of the generalized three-locus system (fig. 1).
The genotypes for a particular phenotype are generated as
shown in figure 2. (ii) The expected number of copies for
each haplotype contributing to the constituent genotypes
is calculated according to

2fabc I fa-b c}
I ~~~Hab~c ePjE[flabc PJ Ha-br(PE) (3)

where E [nabc PJ] is the expected number of copies of Habc
within Pi, and fa 'b c' is the frequency of another haplotype
Habcc, that can combine with Habc to form Pi (for homozy-
gotes, Habc =Ha.b_-). The summation is taken over the
set of haplotypes Hacbcca that can combine with Habc to
form Pi. (iii) Tabc is updated for each Habc for which E
[nfab] > 0. (e) The initial haplotype frequency estimates are

improved, by replacing them with Tabc12N. (f ) The log
likelihood of the sample is evaluated according to equation

Formula
X X [abc

Pa = 2b ab,
b c

qb Y. Y.Etbc
a c

rc Y. Yf abc
a b

(fab = E [abc

fac = Y fabc
b

fbc = E [abc
a

D(AB)ab = fab - Pa qb
D(AC)ac = fac- Parc
D(BC)bc = fbc - qbrc

D(ABC)abc = fabc - Paqbrc -PaD(BC)bc -qbD(AC)ac -rcD(AB)ab

(2). (g) Steps c-fare repeated until the log likelihood stabi-
lizes.

In programming the algorithm, the variables Tabc can be
placed in a three-dimensional array. By using step a, the
allele designations on the haplotype record its array ad-
dress. Step di (figs. 1 and 2) requires a large amount of
program code, and it is impractical to apply with more
than three loci. An alternative is to generate from the typing
data all haplotypes that could form a genotype that is com-
patible with the multiple-locus phenotype and then to pro-
ceed with step dii. This approach requires substantially less
code, and it is extended to more than three loci easily, by
increasing array sizes. We have programmed both versions
of the algorithm. Unfortunately, the latter method takes
substantially longer to run because many genotypes that
could not have produced the phenotype must be evaluated.
Like other EM algorithms, the likelihood increases on each
iteration, until a peak on the likelihood surface is reached
(Dempster et al. 1977; Ott 1977), but there is a danger
that a local extreme has been reached.

Comments
There are several features of this algorithm that deserve

attention. First, it is unnecessary to specify in advance
which haplotypes occur in the sample. The method calcu-
lates frequencies for all possible haplotypes. In practice,
many estimated frequencies are zero. Second, it constrains
all haplotype frequency estimates to nonnegative values.
Third, for systems without null alleles, ML allele frequen-
cies are provided after the first iteration. Haplotype fre-
quencies are properly constrained by these marginal totals
on all subsequent iterations. Fourth, the computational
speed of a program that uses step di is nearly independent
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Figure I Twenty-seven phenotypic categories for the generalized three-locus model (see also Haseman and Elston 1972). The phenotype,
according to the number of identifiable alleles at each locus, is given at the top of each large box. The small vertical boxes depict haplotypes. The
letters within the boxes have the following meanings: i and j are detectable alleles at locus A; k and I are detectable alleles at locus B, and m and n

are detectable alleles at locus C. Recessive alleles are represented by dots at all three loci. Actual typings are substituted for i, j, 1, m, and n, as

appropriate (see fig. 2).

of the number of alleles at the loci; it depends on the sample
size.

Hypothesis Testing
We recommend a testing strategy that avoids focusing

on the individual parameters but captures the essence of
the system. Four disequilibrium-coefficient sets are defined.
The first set contains all three-way coefficients (Db,), and
each of the next three sets include all coefficients between
a particular pair of loci (e.g., set 2 contains all D,,b). Table
2 identifies 16 models incorporating some, or all, coefficient
sets. Following a test for global equilibrium, a forward-
selection testing strategy, whereby significant component
sets are added to the most restricted model, is recom-

mended. The test for global equilibrium is accomplished
by contrasting M15, which is the full model defined by
equation (1), with MO (see table 2). If global equilibrium
is rejected, then the locus pairs in disequilibrium are identi-
fied by contrasting M1-M3 with MO. Finally, three-way
disequilibrium is established by testing a model with three-
way disequilibrium (e.g., M9-M15) and all significant
pairwise sets against an alternative with only the significant

pairwise effects (e.g., M1-M7). This strategy provides a

structured analysis to evaluate all levels of gametic disequi-
librium while at the same time holding the number of hy-
pothesis tests to a minimum. It is possible, although un-

likely, that global equilibrium is rejected, but disequilibrium
between specific pairs cannot be demonstrated. This can

arise for two reasons. First, it is possible to have three-way
disequilibrium while at the same time having equilibrium
between all pairs. This can be demonstrated by contrasting
M8 with MO. Second, the contrast of M15 with MO pro-

vides the most powerful test. Failure to reject specific subhy-
potheses could result from reduced power. The contrast
of M7 with MO gives a more powerful test for pairwise
disequilibrium, but it will not demonstrate which pairs of
loci have nonrandomly associated alleles.

In all cases, the test statistic is twice the negative logarith-
mic likelihood ratio

G = -2(ln LHR- In LHo) (4)

where InLHQ is the natural logarithm of the likelihood func-
tion computed under a general hypothesis and InLHR is the

A B C

1 1 1

A B C
121 1

A B C
I1 21

A B C A B C
2 2 1 2 1 2

WNW W N NWNWABC N EEmi

A B C A B C
1 2 2 2 2 2

A B C A B C
0 1 1 1 0 1

A B C A B C A B C
11 0 0 2 1 0 1 2

A B C A B C A B C A B C
2 0 1 1 0 2 2 1 0 1 2 0

A B C A B C A B C A B C A B C A B C
0 2 2 2 02 2 2 0 0 0 1 0 1 0 1 0 0

A B C A B C A B C A B C
002 0 2 0 2 0 0 0 0 0
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Figure 2 The method for identifying the constituent genotypes
for a phenotype, illustrated for an individual who typed positive for HLA-
A2, HILA-BS, HLA-B27, and recessive for all HLA-C alleles.

logarithm of the likelihood function computed under a

restricted version of Ha. The null hypothesis tested by G
is that the more general model does not fit the data signifi-
cantly better than does the restricted model. With large
samples, the distribution of G theoretically approximates
a x2 distribution with df equal to the number of parameters
eliminated from Ha in order to obtain HR (Weir 1990).

Although the X2 approximations are appealing in princi-
ple, their large sample requirements may be unattainable
in practice. An alternative mechanism for constructing sta-
tistical distributions is provided by resampling the observed
data. Such empirical distributions avoid large sample as-

sumptions at the expense of increased computer time. In
addition, resampling is useful for determining what condi-
tions are necessary for valid x2 approximations and for
identifying when a x2 test is likely to be liberal (i.e., reject
the null hypothesis too frequently) or conservative (i.e.,
maintain the null hypothesis too frequently) for a given
level of type I error. In brief, the empirical distribution for
G is built as follows: A replicated sample is constructed by
drawing N pairs of haplotypes at random, with replication
from the haplotype probability distribution specified by
the null hypothesis, HR. Each haplotype pair specifies a

multiple-locus genotype for which the corresponding phe-
notype is recorded. G is computed for the replicated sample
and saved. The preceding steps are repeated a large number
of times, and the saved G values constitute the empirical
distribution. The simulated G value above which the most
extreme 100a% of the simulated statistics lie is the empiri-
cal lOOa% significance level. This resampling procedure is
an application of the more general statistical bootstrapping
method (Efron and Tibshirani 1993).

The forward-parameter selection process advocated here
is necessary for the resampling tests. This owes to the fact
that two- and three-way disequilibrium coefficients are
scale dependent. For example, the magnitude of pairwise
disequilibrium depends on allele frequencies, and the mag-
nitude of three-way disequilibrium depends on both allele
frequencies and pairwise disequilibrium (Piazza 1975).
Thus, all nonsignificant disequilibrium effects should be
excluded when haplotype frequencies are computed for
simulating a reduced model.
The expected haplotype frequencies for the reduced

models (i.e., MO-M14) do not have direct EM estimates.
They must be obtained by adjusting the haplotype fre-
quency estimates from the full model. For M0-M3 this is
accomplished by plugging only the specified components
into equation (1). For models with disequilibrium between
more than one pair of loci but without three-way disequi-
librium (M4-M7), iterative proportional fitting (Deming
and Stepan 1940) provides nonnegative three-locus haplo-
type frequencies with three-way equilibrium and the exact
allele frequencies and pairwise disequilibria from the full
model. Models with three-way disequilibrium but unsatu-
rated for pairwise effects (M8-M14) require a procedure
such as the Newton-Raphson iteration to meet these condi-
tions (see Agresti 1990).
One advantage of this testing strategy is that it holds the

Table 2

Multple-Locus Haplotype Models

SET OF COMPONENTS

MODEL pqr pD(BC)a qD(AC)b rD(AB)c D(ABC)d

MO ...... 1 0 0 0 0

Ml............ 1 1 0 0 0

M2............ 1 0 1 0 0

M3............ 1 0 0 1 0

M4............ 1 0 1 1 0

MS ...... 1 1 0 1 0

M6............ 1 1 1 0 0

M7............ 1 1 1 1 0

M8............ 1 0 0 0 1

M9............ 1 1 0 0 1

M10 .......... 0 1 0 1

Mit.......... 1 0 0 1 1

M12 ...... 1 0 1 1 1

M13 .......... 1 1 0 1 1

M14 ...... 1 1 1 0 1

M15..........i 1 1 1 1 1

NOTE.-Each component set defined above (e.g., pD(BC)) includes
values over all a, b, c (e.g., all paD(BC)bc) as defined by equation (1).

a df = (nB 1)(nc - 1). nA, nB, and nc refer to the no. of alleles at
the first, second, and third loci, respectively.

b df = (nA - 1)(nc 1). See note a.
c df = (nA - 1)(nB- 1). See note a.
d df = (nA - 1)(B - 1)(nc- 1). See note a.

A B C
1 2 0

111 ww[ 00j00j
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number of tests to a minimum. Nonetheless, testing several
subhypotheses is still required, and the significance level
for a specific test (a') requires the Bonferroni correction:
a' = 1 - (1 - a)lkJ, where k is the number of tests per-
formed (e.g., see Weir 1990). Another advantage of this
testing strategy arises from the relation -2[lnL(MO)
- lnL(M15)] = -2[lnL(M0) - ln(M7)] - 2[lnL(M7)
- lnL(M15)]. The left-hand side of the equation is G for the
global equilibrium hypothesis. The additive components on
the right-hand side provide Gs for testing pairwise equilib-
rium and three-way equilibrium, respectively. This parti-
tion of the x2 for total gametic disequilibrium into additive
components relating to two- and three-way interactions is
a convenient description of the structure of disequilibrium.
Documented Pascal programs for implementing the algo-
rithm and testing strategy proposed here are available free
of charge from the authors for DOS-operated PCs and
Solaris-run Sun systems.

Applications

We have applied this algorithm- and hypothesis-testing
strategy to two data sets in order to experience situations
that will be encountered in real data analyses. We were
most interested in determining (1) the algorithm's sensitiv-
ity to starting conditions, and (2) the correspondence be-
tween the simulated null distributions for G statistics and
their theoretical x2s. Since the correspondence between the
simulated and theoretical distributions was poor at times
(see Results), we took the general characteristics of the data
sets (e.g., sample sizes, numbers and frequencies of alleles,
and presence of recessive alleles) as base lines for a number
of simulation experiments. The simulation experiments
were designed to reveal the conditions where the x2 distri-
bution is most appropriate for G.

Data Sets
The first data set consists of typings at three loci encoding

short tandem repeat (STR) polymorphisms (locus name/
primers: D18S57/AFM147yg7 [Weissenbach et al. 1992],
D20S115/AFM218yg3 [Weissenbach et al. 1992], and
D22S274/AFM164th8 [Weissenbach et al. 1992]) in a sam-
ple of N = 38 Navajo Indians in New Mexico. Each of
these three loci have dinucleotide repeat motifs. Aliquots
of genomic DNA were PCR-amplified using Taq polymer-
ase and fluorescent dye-labeled primers. Following ampli-
fication, PCR reaction products were identified using an
Applied Biosystems (ABI) 373A DNA sequencer, and frag-
ment size determinations were made using the ABI GENE-
SCAN software. The laboratory procedures are fully de-
scribed by Michelini et al. (in press).
The second data set consists of 619 three-locus pheno-

types for the Class I HLA loci (HLA-A, HLA-B, and HLA-
C) for members of the Gila River Indian Community in
central Arizona. The histocompatibility alleles were de-

tected serologically, and the methods of detection have been
described elsewhere along with the other details of the sam-
ple (Williams and McCauley 1992). Both data sets were
examined for recessive phenotypes, in order to determine
whether the haplotype models should include recessive al-
leles. In the absence of recessive phenotypes, the Gart-Nam
statistic was computed. Significance of the statistic was de-
termined by comparison to the standard normal distribu-
tion. The Navajo (STR) and Gila River (HLA) data sets
are summarized in table 3, which gives the alleles encoun-
tered and their frequencies.
The two data sets employed here illustrate the utility of

the method. The Navajo (STR) analysis demonstrates the
method with a relatively small sample size (N = 38) and
with unlinked loci that are unlikely to be in gametic disequi-
librium. By contrast, the Gila River (HLA) analysis demon-
strates the technique with a large sample size (N = 619)
and with closely linked loci that are likely to be in gametic
disequilibrium. Moreover, the method's utility with systems
possessing recessive alleles is demonstrated by the Gila
River (HLA) data.

Simulations
The sampling distribution of G is potentially affected

by numerous factors, such as sample size, numbers and
frequencies of alleles, presence of recessives, and compo-
nents of disequilibrium. In addition, since the simulation
provides an estimate of the sampling distribution, the num-
ber of simulated replicate samples can affect the accuracy
of the estimation. With these points in mind, it is clear that
an exhaustive analysis of all factors and combinations of
factors would be tedious, and such an analysis was not
performed. However, we did perform some simulations to
(1) determine whether sample size was a major factor, (2)
determine the importance of the number of replicated sam-
ples, and (3) find conditions where the X2 approximation
works well. Simulations were performed for the global
equilibrium null hypothesis (MO) contrasted with the full
model (M15), using the characteristics of the Gila River
Indian sample. Either 1,000 or 5,000 replicate samples
were evaluated using the procedure described in Methods.

Results

Recessive Alleles
Recessive phenotypes were observed among the Gila

River HLA-C typings but were absent from the HLA-A
and HLA-B typings. The Gart-Nam test revealed strong
evidence for a recessive allele in the Gila River HLA-B data,
but it failed to detect a recessive allele in the HLA-A typings.
Accordingly, haplotype models for the Gila River HLA
data included recessive alleles at HLA-B and HLA-C, but
not at HLA-A. No recessive phenotypes were seen at the
three Navajo STR loci. Moreover, the Gart-Nam test (Gart
and Nam 1984) failed to provide any additional evidence
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Table 3

Genetic Data Sets

TESTS FOR RECESSIVE ALLELESa

Locus ALLELE FREQUENCY T z P N

A: Navajo (STR)

Al .026
A2 .026
A3 .013

D22S274 .........
A4 .053 .84 -.36 1.000 38

.158
A7 .250
A8 .184
B2 .079
B3 .026
B4 ...132

D18S57 ........B .329 .75 -.52 1.000 38
B6 .013
B7 .013]
B9 .132
B10 .276 J
Cl .013
C2 .447

D20S115 ......... C3 .158 1.42 1.30 .097 38
C4 .368
C5 .013

B: Gila River (HLA)

r A2 .561
A24 .342

HLA-A .......... A31 .080 1.00 -.06 1.000 619
AR .017
AX .000

B5 .075
BN21 .143
B27 .099
B35 .172
B39 .111

HLA-B Bw48 .188 1.81 6.36 .000 619

B51 .056
Bw6O .036
Bw6l .048
BR .021
BX .034 J
Cw2 .098,
Cw3 .221
Cw4 .152

HLA-C ............ Cw7 .115 No test ... ... 619
Cw8 .170
CwR .002
CX .241

a We use the Gart and Nam (1984) test statistic T = Yi2ni/(Gi + ni), where Gi = ni + Xi<j nij, ni is the number of phenotypes that show only
the ith allele, and ni, is the number of heterozygotes for the ith and jth alleles. Denoting the sample size by N and the number of codominant alleles
by m, the null hypothesis is tested by the asymptotic normal score z = (T - 1)Nla(m - 1)"2. P = significance level; all hypothesis tests are one-
sided.
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Table 4

Navajo and Gila River Disequilibrium Analysis

Sample HRa Hab Hypothesis Gc df Px2d pe

Navajo .......... MO M15 Global equilibrium 102.55 301 1.000 .375
MO M15 Global equilibrium 2304.65 315 .000 .000
MO Ml B x C equilibrium 1929.37 66 .000 .000

Gila River .......... MO M2 A x C equilibrium 113.72 18 .000 .000
MO M3 A x B equilibrium 177.88 33 .000 .000
M7 M15 Three-way equilibrium 89.54 198 1.000 .000

a Null hypothesis.
b Alternative hypothesis (see eq. [4]).
c Test statistics.
d Statistical P-value estimated from X2 distribution.
' Statistical P-value estimated from the resampled distribution.

for them. Thus, recessive alleles were excluded from haplo-
types at all three Navajo STR loci.

Optimization
Maxima on the Navajo (STR) log-likelihood function

and the Gila River (HLA) log-likelihood function were ob-
tained using starting allele frequencies equal to the recipro-
cal of the number of alleles at each locus, assuming multi-
ple-locus equilibrium (that is, haplotype frequencies were
the product of allele frequencies). In order to verify that
these were indeed global maxima and to evaluate the sensi-
tivity of the algorithm to starting values, we subjected each
data set to 1,000 different sets of initial haplotype frequen-
cies. Each of these sets were generated at random, under
the constraint that the haplotype frequencies summed to
1. No constraints were placed on multiple-locus equilib-
rium, and, in fact, many of the random haplotype-fre-
quency sets had profoundly irregular patterns of disequilib-
rium. Each set of initial haplotype frequencies for the Nav-
ajo (STR) data set generated the same optimization point.
Thirty of the 1,000 initial haplotype frequency sets tried
for the Gila River (HLA) sample found a slightly lower
stable peak with very similar parameter estimates, while
the remaining 970 sets of initial values found the slightly
higher peak discovered on the first try. Thus, our initial
impression that the algorithm is not overly sensitive to
initial conditions was confirmed.

Allele Frequencies, Haplotype Frequencies, and
Gametic Disequilibrium
We followed the steps of our recommended hypothesis-

testing strategy. For the Navajo (STR) data (table 4), global
equilibrium was not rejected, and the analysis was termi-
nated. However, the statistical significance level obtained
from the theoretical X2 (P = 1.0) does not agree with the
resampling significance level (P = .375). For the Gila River
(HLA) data (table 4), global equilibrium was rejected by
both sampling distributions, thus warranting continuation

of testing. Gametic disequilibrium between pairs of loci
was tested for by contrasting M1-M3 with MO. The results
of these tests were highly significant by both statistical dis-
tributions, leading us to test for three-way disequilibrium
by comparing M15 with M7. For this last test, the statisti-
cal significance levels obtained from the X2 and resampling
distributions were in extreme opposition. While the x2 P
value was 1.00, it was <.001 when resampling was used.
In fact, the maximum G simulated under M7 (71.58), was
considerably smaller than the observed value (89.54). Since
we accept the resampling distribution as being more reliable
than the x2 approximation, we also accept that the HLA
three-way disequilibrium is significant. However, it ac-
counts for a relatively small portion of the departure from
equilibrium. The total disequilibrium G = 2304.65 was
partitioned into 89.54 (4%) for three-way interactions and
2215.11 (96%) for two-way interactions (table 4).
The complete theoretical and empirical sampling distri-

butions are shown for all tests in table 5. There are pro-
found differences in every case. Furthermore, the apparent
agreement between the resampling and x2 P-values that
was seen for several tests is revealed to be an artifact of
extreme disequilibrium among the HLA loci. Since it has
been claimed that another X2 test works well with two
multiallelic loci (Weir and Cockerham 1979), we collapsed
our data into two-locus subsets and applied the likelihood-
ratio test recommended. The x2 distribution worked much
better with the two-locus data sets (table 5). It is nonetheless
interesting that the X2 distributions provided more conser-
vative tests than did the resampled distributions, when lo-
cus trios were analyzed together.
Simulations

In all cases we simulated the three-locus null distribution
as specified by MO (global equilibrium) and contrasted it
with the full model as specified by M15. Our primary
objective was to identify conditions where the theoretical
x2s are good approximations of the empirical distributions.
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Table 5

Disequilibrium Sampling Distributions

CRITIcAL VALUES wrrIH TAIL PROBABHIrY OF

.95 .90 .75 .50 .25 .10 .05 .01

Navajo (STR):
M15 vs. MO .............. 79.22 82.70 90.40 98.44 106.53 114.69 119.60 128.62
x2 (301) ................ 261.81 270.02 284.11 300.33 317.17 332.84 342.46 361.00

Gila River (HLA):
M15 vs. MO .............. 222.48 229.30 240.87 253.98 268.05 279.62 286.61 302.48
*2 (315) ................ 274.89 283.30 297.73 314.34 331.55 347.57 357.40 376.32
M3 vs. MO ................ 13.67 15.89 20.73 26.53 32.42 38.71 41.39 46.18
(Two locus) ............... 22.25 24.99 28.9 33.45 38.98 45.11 47.94 54.16
X2 (33) ................. 20.87 23.12 27.22 32.34 38.06 43.75 47.4 54.78
M2 vs. MO ................ 4.92 6.22 9.13 12.74 17.04 21.06 24.17 29.97
(Two locus) ............... 9.37 10.96 13.67 17.29 21.49 26.05 29.14 35.37
X2 (18) ................. 9.40 10.87 13.68 17.34 21.61 25.99 28.87 34.81
Ml vs. MO ................ 36.09 40.06 45.54 52.75 60.5 70.61 73.97 83.31
(Two locus) ............... 48.28 51.71 57.2 64.36 72.87 79.7 84.9 95.75
X2 (66) ................. 48.31 51.78 57.94 65.34 73.35 81.09 85.97 95.63
M15 vs. M7 .............. 23.31 25.44 29.67 35.73 42.30 48.96 53.72 62.10
X2 (198) ................ 166.44 172.96 184.24 197.33 211.03 223.89 231.83 247.21

NoTE.-Empirical and theoretical sampling distributions for hypothesis tests on differing levels of gametic disequilibrium are shown. Empirical
distributions are grouped with the particular x2 that should approximate them. Each comparison of models within a block of rows tests a hypothesis
about the same set of parameters. "(Two locus)" indicates that pairwise disequilibrium was tested using an appropriate two-locus model.

Following this, we attempted to identify the factors that
caused the theoretical x2s to depart from the empirical
distributions. A x2 test is classified liberal if it rejects the
null hypothesis more often than does the resampling test.
By contrast, a x2 test is classified conservative if it maintains
the null hypothesis more often than does the resampling
test. All simulation results are reported in table 6. In simula-
tion experiment 1 we maintained the Gila River Indian

sample size (N = 619) and replicated 5,000 three-locus
data sets. Each locus had two codominant alleles with equal
frequencies and no recessive alleles. The appropriate x2

distribution with 4 df provided an excellent approximation.
In order to test whether 5,000 replicate samples are neces-

sary to estimate the distribution adequately, the next exper-

iment (2) maintained all of the conditions of experiment 1,
except that only 1,000 three-locus data sets were generated.

Table 6

Critical Values of Simulated Sampling Distributions

CRIcAL VALUES wITH TAIL PROBABILTY OF

EXPERIMENT N' Rb nA-nB-nCC FREQUENCYd RECESSIVE?' .950 .900 .750 .500 .250 .100 .050 .010

............................ 619 5,000 2-2-2 Even No .73 1.08 1.91 3.42 5.39 7.81 9.55 13.39
2............................ 619 1,000 2-2-2 Even No .68 1.07 2.00 3.35 5.09 7.38 8.86 13.75
3............................ 100 1,000 2-2-2 Even No .70 1.09 2.02 3.55 5.60 8.10 9.88 13.86
4............................ 100 1,000 2-2-2 Skew No .80 1.14 1.96 3.19 4.62 6.61 7.85 10.96
5............................ 1,000 1,000 2-2-2 Skew No .77 1.12 1.99 3.36 5.22 7.55 9.46 13.20

x2 (4 df) .. . ... ... ... .71 1.06 1.92 3.36 5.39 7.78 9.49 13.28
6 ..... ....... 619 1,000 4-12-7 Even No 380.87 388.12 401.25 416.11 432.75 448.85 456.58 474.43
7 ..... ....... 619 1,000 4-12-7 HLA No 239.10 245.44 257.49 271.61 285.73 297.89 305.21 316.97
8 ..... ....... 619 1,000 4-12-7 HLA Yes 222.48 229.30 240.87 253.98 268.05 279.62 286.61 302.48

x2 (315 df .......... ... ... ... ... ... 274.89 283.30 297.73 314.34 331.55 347.57 357.40 376.32

'Size of simulated samples.
bNumber of replicated samples under the null hypothesis.
cNos. of alleles at the first, second, and third loci, respectively.
d"Evenness" of allele frequencies (see text for details.)
'Indicates whether recessive alleles are included in haplotype models.
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This estimated sampling distribution is still quite close to
the theoretical X2. Accordingly, 1,000 replications were
used in the subsequent simulation experiments.
The purpose of experiment 3 was to observe the effect

of sample size (N) on the test statistic's distribution. The
conditions of experiment 2 were maintained, except that
N was reduced from 619 to 100. Higher values of G were
observed more frequently than was predicted by X2 distri-
bution. This result is important because the X2 approxima-
tion is liberal, while previously (table 5) it was very conser-
vative. Simulation experiment 4 maintained the conditions
of experiment 3 (i.e., N = 100) but substituted uneven
allele frequencies (.9 and .1) at each locus. The resulting
empirical distribution was shifted left, making the X2 ap-
proximation conservative. The results of experiments 3 and
4 suggest that the deviation of a true sampling distribution
from its theoretical X2 will balance the conservative ten-
dency due to uneven allele frequencies and the liberal ten-
dency due to sample size. In order to verify this, simulation
experiment 5 maintained the conditions of experiment 4
but increased the sample size to 1,000 individuals. As ex-
pected, the theoretical X2 closely approximated the empiri-
cal distribution.
The next simulation experiments dealt more directly

with the conditions of the HLA data set. In simulation
experiment 6, the Gila River Indian sample size (N = 619)
and numbers of alleles at each locus (nA = 4; nB = 12; and
nc = 7) were maintained, but all alleles at a locus were
assigned the same frequency (e.g., l/nA), and all alleles were
codominant. One thousand data sets were simulated under
multiple-locus equilibrium. The distribution of the test sta-
tistic, under these circumstances was shifted far to the right
of the X2 distribution (table 6). Thus, the theoretical distri-
bution created a dangerously liberal test. The effect of un-
even allele frequencies was assessed in simulation experi-
ment 7. The conditions of experiment 6 were maintained,
but the allele frequencies used were those observed in the
Gila River (HLA) sample. As a result, the empirical distri-
bution was dramatically shifted leftward. Thus, the x2 ap-
proximation was made extremely conservative, and the
apparent bias in experiment 6 was reversed. Finally, to see
the effect of recessive alleles, we simulated under the same
conditions as experiment 6, but, following the observed
HLA data structure, the last alleles in the HLA-B and HLA-
C series were both recessive. The effect of the recessive
alleles was to shift the distribution further leftward, thus
making the test more conservative.

Discussion

The optima found by our algorithm for the Navajo
(STR) and Gila River (HLA) likelihood equations appear
to be global maxima. This is an important result because
the algorithm is not guaranteed to yield a global maximum.
In fact, Weir and Cockerham (1979) have identified data

configurations for which another EM algorithm (see Hill
1974) fails to provide the global maximum for a genetic
model with two codominant alleles at two loci. Their prob-
lems arose when the single-locus marginal totals exhibited
substantial deviations from Hardy-Weinberg expectations.
Weir and Cockerham (1979) provide direct solutions for
their model's likelihood, but their approach is not feasible
with multiple (>2) loci or with genetic systems containing
recessive alleles. While our results are encouraging, we
agree with Weir and Cockerham (1979) that blind applica-
tions of iterative procedures should be avoided and that
multiple-locus analyses of data with significant deviations
from Hardy-Weinberg expectations should be approached
cautiously.
The ability to easily test for linkage disequilibrium in

highly polymorphic systems with recessive alleles is an im-
portant advantage of the methods proposed here. Chakra-
borty et al. (1994) have demonstrated that failure to include
recessives in statistical analyses, when they exist, can falsely
reject the test of Brown et al. (1980) for linkage equilib-
rium. To the extent that this finding applies to other tests
for linkage equilibrium, it is advisable to apply a test such
as Gart and Nam's (1984) for hidden recessives and to
include recessives in analyses whenever there is evidence
for their existence. However, it should not be forgotten that
genetic substructuring of populations causes a heterozygote
deficiency that will spuriously appear as a recessive allele
with the Gart-Nam test. Solid knowledge of the genetic
systems being tested and the sample collection procedures
can provide valuable indications about the likelihood of
recessive alleles and population substructure.
The forward-selection testing strategy advocated here is

unusual with multiple-factor categorical data analysis.
While forward selection is necessary for constructing re-
sampled distributions, backward-selecting strategies, in
which nonsignificant components are eliminated from the
most general model (e.g., Sokal and Rohlf 1981; Agresti
1990), are commonly used in other circumstances. The
rationale behind backward selection is that higher-order
disequilibrium obscures the meaning of lower-order dis-
equilibrium. For example, three-way disequilibrium
(D(ABC)) indicates that the disequilibrium between a pair
of alleles at two loci is heterogeneous, depending on the
allele present at a third locus (e.g., D(AB)12 is positive on
C1-bearing chromosomes but negative on C2-bearing chro-
mosomes). However, this effect may be relatively weak.
Consider the Gila River HLA example, the total G
(2304.61) is partitioned into 2214.87 for disequilibrium
between pairs of loci and 89.74 for three-way interaction
(table 3). Although both components are statistically sig-
nificant by resampling, high-order effects account for only
about 4% of the total departure from multiple-locus equi-
librium. Clearly, most of the deviation from the global null
hypothesis is accounted for by pairwise disequilibrium, and
analysis of the pairwise effects will serve at least for descrip-
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Figure 3 The 10 haplotypes estimated to be most frequent in the
Gila River HLA data set. Expectations are given according to MO (global
equilibrium; dotted), M7 (pairwise disequilibrium only; striped), and M15
(full model, blackened).

tive purposes. Visual support for this interpretation is pro-
vided by figure 3, in which frequency estimates for the 10
most common haplotypes are plotted for three models. The
estimates obtained for the full model (M15) are closely
approximated by those obtained for the model allowing
only pairwise disequilibrium (M7). In contrast, the global
equilibrium model (MO) provides very different estimates.
The test statistic (G) distributions produced by computer

resampling reveal conditions under which %2 approxima-
tions are useful and many conditions under which they
will fail. The x2s worked well with the two-locus models
considered here, but they were inadequate when a third
locus was simultaneously considered. The success with two
loci should be interpreted cautiously. In fact, Guo and
Thompson (1992) have demonstrated that X2 distributions
can be either too liberal or too conservative when applied
to a two-way contingency table test for Hardy-Weinberg
proportions. The most predominant factors affecting the
x2's performance with three loci are sample size (N) and
evenness of allele frequencies. Small sample size (N) gives
the X2 test a liberal tendency (that is, the probability of a
type I error is underestimated), but unevenness of allele
frequencies renders the x2 test very conservative (that is,
the probability of a type I error is over estimated). Increas-
ing the number of alleles at the loci exacerbates both of
these tendencies. Recessive alleles at some or all of the loci
result in a tendency to underestimate a. Application Of X2
to statistical decisions would have led to extremely conser-
vative interpretations for both data sets analyzed here, but
this may not be universal. Accordingly, we recommend
that X2 be used only for preliminary screening of results
and that formal acceptance or rejection of hypotheses be
determined by the resampled distributions.
The haplotype-estimation algorithm- and hypothesis-

testing strategy provided in this paper will enable detailed
analyses of gametic disequilibrium. It is well known that
pairwise disequilibrium coefficients (e.g., D(AB)ab, D(AC)ac,
and D(BC)b,) are dependent on allele frequencies, and dif-
ferent standardized measures have been recommended in

order remove this dependence (Hedrick 1987; Weir 1990).
Since the decision whether to standardize and the choice
between different standardization methods depend on pop-
ulation-genetic and statistical assumptions appropriate to
specific biological questions, we do not favor one method
over another. Rather, we wish to note that all such stan-
dardizations utilize functions of the basic quantities that
are estimated here. Thus, the analyses that we propose can
serve as a springboard to any more extensive analysis of
gametic disequilibrium. It should be noted also that,
whether or not high-order disequilibrium coefficients are
interesting in their own right, they are fundamental for
computing the covariances between pairwise disequilib-
rium coefficients (Hill and Weir 1988; Weir 1990). Thus,
analysis and interpretation of pairwise gametic disequilib-
rium when more than two loci are considered necessitates
computing high-order disequilibrium coefficients.
The value of highly polymorphic loci for linkage analysis,

human identification, and evolutionary genetics has been
demonstrated in a number of recent publications (e.g., Ott
1992; Bowcock et al. 1994; Gill et al. 1994). These works
underscore the necessity of good statistical methods and
computer algorithms for such systems. In addition, we will
presently review two areas of broad interest that will pro-
vide applications for our method. First, direct sequencing
from genomic DNA provides ambiguities when an individ-
ual is heterozygous at two or more nucleotide positions.
By treating each position as a polymorphic locus, our ap-
proach provides complete sequences of multiple alleles
when population-based samples (as opposed to family-
based samples) are used. Another, recently proposed
method to accomplish this (Clark 1990) capitalizes on
much the same information as does our method: haplo-
types observed in homozygotes or single-locus heterozy-
gotes are used to resolve multiple heterozygotes. This alter-
native method does not, however, provide frequency esti-
mates for the haplotypes observed. Second, there has been
recent interest in using linkage disequilibrium for gene map-
ping (Chakravarti et al. 1984; Jorde et al. 1993; Hill and
Weir 1994). The basic principle underlying this approach
is that chromosomes bearing disease-causing genes that are
descended from a common mutation should show the an-
cestral haplotype in the vicinity of the disease gene. The
extent to which the ancestral haplotype is preserved reflects
recombination events occurring over the entire history of
the population (Hastbacka et al. 1992). While the efficacy
of the method has been questioned (Kaplan and Weir 1992;
Hill and Weir 1994), future assessments of the method
can only be improved by efficient methods for detecting
haplotypes in multiple highly polymorphic genetic systems.
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